Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Wen-Ying Wei* and Jin-Yu Han

Key Laboratory for Green Chemical Technology of the State Education Ministry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: wwy7324@eyou.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.023$
$w R$ factor $=0.065$
Data-to-parameter ratio $=9.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

A polymeric copper(II) complex bridged by benzene-1,3,5-tricarboxylate

The asymmetric unit of the title polymer, poly[copper(II)- μ_{6} -benzene-1,3,5-tricarboxylato-tri- μ_{3}-hydroxo $]$, $\left[\mathrm{Cu}_{3}\left(\mathrm{C}_{9} \mathrm{H}_{3} \mathrm{O}_{6}\right)\right.$ $\left.(\mathrm{OH})_{3}\right]_{\mathrm{n}}$, contains two independent $\mathrm{Cu}^{\mathrm{II}}$ atoms, one located in a general position assuming a pyramidal coordination geometry, and the other located on an inversion center assuming a square-planar geometry. The benzenetricarboxylate and hydroxo groups bridge the $\mathrm{Cu}^{\mathrm{II}}$ atoms to form a threedimensional polymeric structure.

Comment

Benzenetricarboxylate (BTC) usually plays the role of a bridging ligand in metal complexes. We present here the structure of the title $\mathrm{Cu}^{\mathrm{II}}$ complex $\left[\mathrm{Cu}_{3}(\mathrm{OH})_{3} \mathrm{BTC}\right]_{\mathrm{n}}$, (I), in which BTC ligands link the $\mathrm{Cu}^{\mathrm{II}}$ atoms to form a threedimensional polymeric complex.

A sheet of the three-dimentional polymeric structure of (I) is shown in Fig. 1. The asymmetric unit contains two $\mathrm{Cu}^{\text {II }}$ atoms; atom Cu 1 is located on a general position and assumes a pyramidal coordination geometry formed by two BTC and three hydroxo groups (O2), while atom Cu 2 is located at an inversion center and assumes a distorted square-planar coordination geometry formed by two BTC and two hydroxo groups (Table 1). Each BTC bridges six $\mathrm{Cu}^{\mathrm{II}}$ atoms to form the two-dimentional polymeric sheet, all carboxylate groups of the BTC coordinating to $\mathrm{Cu}^{\mathrm{II}}$ atoms in a bidentate chelating fashion. The O1 hydroxo group is located on a twofold axis and bridges two neighboring Cu 1 atoms. The O 2 hydroxo group is located at a general position and bridges three Cu atoms (two Cu 1 and one Cu 2); thus the two-dimensional polymeric sheets are linked to form the three-dimensional polymeric structure.

Experimental

An aqueous solution (20 ml) of benzene-1,3,5-tricarboxylic acid $\left(\mathrm{H}_{3} \mathrm{BTC}\right)(0.105 \mathrm{~g})$, adipic acid $(0.073 \mathrm{~g})$ and $\mathrm{NaOH}(0.04 \mathrm{~g})$ was

Received 8 July 2005
Accepted 11 August 2005
Online 17 August 2005
mixed with an aqueous solution $(10 \mathrm{ml})$ of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ with continuous stirring. The mixture was sealed in a 40 ml Teflon-lined stainless steel vessel and heated at 453 K for 96 h under autogenous conditions. After cooling to room temperature, the resulting product was filtered off to obtain blue crystals of (I) (about 90% yield based on the Cu source). IR ($\mathrm{KBr}, \nu \mathrm{cm}^{-1}$): 3450, 3068, 1612, 1540, 1437, 1379, 754, 723, 589, 484; Elemental analysis calculated for $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{Cu}_{3} \mathrm{O}_{9}$: C 24.09 , $\mathrm{H} 1.35 \%$; found: C 23.94 , H 1.46%.

Crystal data

$\left[\mathrm{Cu}_{3}\left(\mathrm{C}_{9} \mathrm{H}_{3} \mathrm{O}_{6}\right)(\mathrm{OH})_{3}\right]$
$M_{r}=448.76$
Monoclinic, $P 2_{1} / m$
$a=3.6100$ (11) \AA
$b=14.110$ (4) \AA
$c=10.915$ (3) \AA
$\beta=97.060(4)^{\circ}$ 。
$V=551.8(3) \AA^{3}$
$Z=2$

$D_{x}=2.701 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 1551
reflections
$\theta=2.4-24.9^{\circ}$
$\mu=5.78 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, blue
$0.14 \times 0.12 \times 0.08 \mathrm{~mm}$

Data collection

Bruker APEX-II CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.376, T_{\text {max }}=0.630$
2985 measured reflections

$$
1020 \text { independent reflections }
$$

914 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-4 \rightarrow 3$
$k=-16 \rightarrow 16$
$l=-9 \rightarrow 12$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.065$
$S=1.01$
1020 reflections
103 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0412 P)^{2}\right. \\
& \quad+0.6748 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.00 \\
& \Delta \rho_{\max }=0.75 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=-0.38 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 1
A sheet of the polymeric molecular structure of (I), shown with 50% probability displacement ellipsoids (arbitrary spheres for H atoms). [Symmetry codes: $(A)-x, 1-y, 1-z ;(B)-x,-\frac{1}{2}+y, 1-z ;(C) x$, $\left.-2+y,-1+z ;(D)-2+x,-y+\frac{1}{2},-1+z.\right]$

C-bound H atoms were placed in geometrically idealized positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA$, and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$. H atoms on hydroxo groups were located in a difference Fourier map and refined as riding in their as-found position relative to the O atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

References

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

